😊 AI Expression Generator

Core Source Code & Emotion Recognition Implementation

React 19 TypeScript Gemini AI Emotion Recognition

🔍 About This Code Showcase

This curated code snippet demonstrates how the AI Expression Generator transforms a single photo into 9 different emotional expressions using advanced facial recognition and AI-powered emotion synthesis.

Full deployment scripts, API integrations, and proprietary details are omitted for clarity and security. This showcase highlights the core emotion processing algorithms and facial transformation techniques.

🎭 Core Algorithm: Emotion Recognition Engine

The foundation of the AI Expression Generator is its ability to analyze facial features and generate realistic emotional expressions. Here's the core implementation:

📄 emotion_processor.ts
import { GoogleGenerativeAI } from '@google/generative-ai'; interface EmotionConfig { emotion: string; intensity: number; description: string; facialFeatures: string[]; } class EmotionProcessor { private genAI: GoogleGenerativeAI; private model: any; // The 9 core emotions our AI can generate with precise control private emotionTemplates: EmotionConfig[] = [ { emotion: 'happiness', intensity: 0.8, description: 'Genuine joy with raised cheeks', facialFeatures: ['smile', 'raised_cheeks', 'crow_feet'] }, { emotion: 'sadness', intensity: 0.7, description: 'Subtle melancholy with downturned features', facialFeatures: ['downturned_mouth', 'lowered_eyebrows', 'drooped_eyelids'] }, { emotion: 'surprise', intensity: 0.9, description: 'Wide-eyed amazement with raised eyebrows', facialFeatures: ['wide_eyes', 'raised_eyebrows', 'open_mouth'] } ]; constructor(apiKey: string) { this.genAI = new GoogleGenerativeAI(apiKey); this.model = this.genAI.getGenerativeModel({ model: 'gemini-pro-vision' }); } async generateExpressions(imageFile: File): Promise<string[]> { """ Transform a single photo into 9 different emotional expressions. Uses advanced AI to maintain facial identity while modifying expressions. Args: imageFile: The input portrait photo Returns: Array of base64-encoded images with different expressions """ const imageBase64 = await this.convertToBase64(imageFile); const expressions: string[] = []; // Process each emotion with careful preservation of facial identity for (const emotionConfig of this.emotionTemplates) { const prompt = this.buildEmotionPrompt(emotionConfig); // This is the core AI transformation - maintaining identity while changing expression const result = await this.model.generateContent([ prompt, { inlineData: { data: imageBase64, mimeType: imageFile.type } } ]); // Post-process to ensure consistency and quality const processedExpression = await this.enhanceExpression(result, emotionConfig); expressions.push(processedExpression); } return expressions; } private buildEmotionPrompt(config: EmotionConfig): string { // Carefully crafted prompts ensure realistic and consistent results return `Transform this portrait to show ${config.emotion} expression with ${config.intensity * 100}% intensity. Maintain the person's identity, age, and facial structure exactly. Focus on these facial changes: ${config.facialFeatures.join(', ')}. Keep lighting, background, and pose identical. Result should look natural and photorealistic.`; } }

🖼️ Advanced Face Processing Pipeline

The expression generation requires sophisticated face detection and feature mapping to ensure consistent results across all emotions:

📄 face_analyzer.ts
class FaceAnalyzer { async analyzeFacialStructure(imageData: string) { """ Analyze facial landmarks and structure to ensure consistent transformations. This prevents the AI from accidentally changing identity during expression generation. """ // Extract key facial landmarks for identity preservation const landmarks = await this.detectFacialLandmarks(imageData); // Calculate facial geometry ratios that must remain constant const geometryRatios = { eyeDistance: this.calculateEyeDistance(landmarks), noseWidth: this.calculateNoseWidth(landmarks), faceShape: this.analyzeFaceShape(landmarks), skinTone: await this.analyzeSkinTone(imageData) }; // Create identity fingerprint for consistency checking const identityFingerprint = this.createIdentityFingerprint(geometryRatios); return { landmarks, geometryRatios, identityFingerprint, // These features can be modified for expressions mutableFeatures: ['mouth_curve', 'eyebrow_position', 'eye_openness', 'cheek_elevation'] }; } private validateConsistency(originalAnalysis: any, generatedImage: string): boolean { """ Ensure the generated expression maintains facial identity. This quality control step prevents unrealistic transformations. """ // Re-analyze the generated image const newAnalysis = await this.analyzeFacialStructure(generatedImage); // Check if critical identity features remain unchanged const consistencyScore = this.compareIdentityFingerprints( originalAnalysis.identityFingerprint, newAnalysis.identityFingerprint ); // Threshold of 0.85 ensures high identity preservation return consistencyScore > 0.85; } private calculateEyeDistance(landmarks: any): number { // Eye distance is a critical identity marker that must remain constant const leftEye = landmarks.leftEye.center; const rightEye = landmarks.rightEye.center; return Math.sqrt( Math.pow(rightEye.x - leftEye.x, 2) + Math.pow(rightEye.y - leftEye.y, 2) ); } }

⚙️ Technical Implementation Notes

Key Algorithms & Innovations

Why This Approach Works