🔍 About This Code Showcase
This curated code snippet demonstrates how the AI Expression Generator transforms a single photo into 9 different emotional expressions using advanced facial recognition and AI-powered emotion synthesis.
Full deployment scripts, API integrations, and proprietary details are omitted for clarity and security. This showcase highlights the core emotion processing algorithms and facial transformation techniques.
🎭 Core Algorithm: Emotion Recognition Engine
The foundation of the AI Expression Generator is its ability to analyze facial features and generate realistic emotional expressions. Here's the core implementation:
import { GoogleGenerativeAI } from '@google/generative-ai';
interface EmotionConfig {
emotion: string;
intensity: number;
description: string;
facialFeatures: string[];
}
class EmotionProcessor {
private genAI: GoogleGenerativeAI;
private model: any;
private emotionTemplates: EmotionConfig[] = [
{ emotion: 'happiness', intensity: 0.8, description: 'Genuine joy with raised cheeks',
facialFeatures: ['smile', 'raised_cheeks', 'crow_feet'] },
{ emotion: 'sadness', intensity: 0.7, description: 'Subtle melancholy with downturned features',
facialFeatures: ['downturned_mouth', 'lowered_eyebrows', 'drooped_eyelids'] },
{ emotion: 'surprise', intensity: 0.9, description: 'Wide-eyed amazement with raised eyebrows',
facialFeatures: ['wide_eyes', 'raised_eyebrows', 'open_mouth'] }
];
constructor(apiKey: string) {
this.genAI = new GoogleGenerativeAI(apiKey);
this.model = this.genAI.getGenerativeModel({ model: 'gemini-pro-vision' });
}
async generateExpressions(imageFile: File): Promise<string[]> {
"""
Transform a single photo into 9 different emotional expressions.
Uses advanced AI to maintain facial identity while modifying expressions.
Args:
imageFile: The input portrait photo
Returns:
Array of base64-encoded images with different expressions
"""
const imageBase64 = await this.convertToBase64(imageFile);
const expressions: string[] = [];
for (const emotionConfig of this.emotionTemplates) {
const prompt = this.buildEmotionPrompt(emotionConfig);
const result = await this.model.generateContent([
prompt,
{
inlineData: {
data: imageBase64,
mimeType: imageFile.type
}
}
]);
const processedExpression = await this.enhanceExpression(result, emotionConfig);
expressions.push(processedExpression);
}
return expressions;
}
private buildEmotionPrompt(config: EmotionConfig): string {
return `Transform this portrait to show ${config.emotion} expression with ${config.intensity * 100}% intensity.
Maintain the person's identity, age, and facial structure exactly.
Focus on these facial changes: ${config.facialFeatures.join(', ')}.
Keep lighting, background, and pose identical.
Result should look natural and photorealistic.`;
}
}
🖼️ Advanced Face Processing Pipeline
The expression generation requires sophisticated face detection and feature mapping to ensure consistent results across all emotions:
class FaceAnalyzer {
async analyzeFacialStructure(imageData: string) {
"""
Analyze facial landmarks and structure to ensure consistent transformations.
This prevents the AI from accidentally changing identity during expression generation.
"""
const landmarks = await this.detectFacialLandmarks(imageData);
const geometryRatios = {
eyeDistance: this.calculateEyeDistance(landmarks),
noseWidth: this.calculateNoseWidth(landmarks),
faceShape: this.analyzeFaceShape(landmarks),
skinTone: await this.analyzeSkinTone(imageData)
};
const identityFingerprint = this.createIdentityFingerprint(geometryRatios);
return {
landmarks,
geometryRatios,
identityFingerprint,
mutableFeatures: ['mouth_curve', 'eyebrow_position', 'eye_openness', 'cheek_elevation']
};
}
private validateConsistency(originalAnalysis: any, generatedImage: string): boolean {
"""
Ensure the generated expression maintains facial identity.
This quality control step prevents unrealistic transformations.
"""
const newAnalysis = await this.analyzeFacialStructure(generatedImage);
const consistencyScore = this.compareIdentityFingerprints(
originalAnalysis.identityFingerprint,
newAnalysis.identityFingerprint
);
return consistencyScore > 0.85;
}
private calculateEyeDistance(landmarks: any): number {
const leftEye = landmarks.leftEye.center;
const rightEye = landmarks.rightEye.center;
return Math.sqrt(
Math.pow(rightEye.x - leftEye.x, 2) +
Math.pow(rightEye.y - leftEye.y, 2)
);
}
}