The foundation of the Gemini Image Editor is its ability to intelligently analyze images, apply professional enhancements, and provide precise editing controls while maintaining image quality:
import { GoogleGenerativeAI } from '@google/generative-ai';
import { ImageProcessor } from './image-processor';
interface EnhancementSettings {
brightness: number;
contrast: number;
saturation: number;
sharpness: number;
noiseReduction: number;
colorBalance: 'auto' | 'warm' | 'cool' | 'neutral';
}
class AIImageEnhancer {
private geminiVision: GoogleGenerativeAI;
private canvas: HTMLCanvasElement;
private ctx: CanvasRenderingContext2D;
private enhancementPresets = {
portrait: {
brightness: 1.05,
contrast: 1.1,
saturation: 1.15,
sharpness: 0.8,
noiseReduction: 0.6,
skinToneOptimization: true
},
landscape: {
brightness: 1.02,
contrast: 1.2,
saturation: 1.25,
sharpness: 1.1,
noiseReduction: 0.4,
skyEnhancement: true
},
product: {
brightness: 1.08,
contrast: 1.15,
saturation: 1.05,
sharpness: 1.3,
noiseReduction: 0.8,
backgroundClean: true
}
};
constructor(apiKey: string) {
this.geminiVision = new GoogleGenerativeAI(apiKey);
this.canvas = document.createElement('canvas');
this.ctx = this.canvas.getContext('2d')!;
}
async enhanceImageIntelligently(imageFile: File): Promise<string> {
"""
Apply AI-powered intelligent enhancement to images.
Analyzes image content and applies optimal enhancement settings automatically.
Args:
imageFile: The input image file to enhance
Returns:
Base64-encoded enhanced image data
"""
const imageAnalysis = await this.analyzeImageContent(imageFile);
const enhancementStrategy = this.determineEnhancementStrategy(imageAnalysis);
const enhancedImage = await this.applyIntelligentEnhancements(
imageFile,
enhancementStrategy
);
const finalImage = await this.applyContentSpecificOptimizations(
enhancedImage,
imageAnalysis
);
return finalImage;
}
private async analyzeImageContent(imageFile: File): Promise<any> {
"""
Use Gemini Vision to analyze image content and characteristics.
Identifies image type, subjects, lighting conditions, and quality issues.
"""
const model = this.geminiVision.getGenerativeModel({ model: 'gemini-pro-vision' });
const analysisPrompt = """
Analyze this image for professional photo enhancement. Identify:
1. IMAGE TYPE: Portrait, landscape, product, architecture, etc.
2. LIGHTING CONDITIONS: Natural, artificial, mixed, under/overexposed
3. SUBJECTS: People, objects, scenery (describe main elements)
4. QUALITY ISSUES: Noise, blur, color cast, compression artifacts
5. COMPOSITION: Rule of thirds, symmetry, leading lines
6. COLOR PALETTE: Dominant colors and overall tone
7. ENHANCEMENT NEEDS: Specific areas requiring improvement
Provide specific technical recommendations for enhancement.
""";
const imageBase64 = await this.convertToBase64(imageFile);
const result = await model.generateContent([
analysisPrompt,
{
inlineData: {
data: imageBase64,
mimeType: imageFile.type
}
}
]);
return this.parseImageAnalysis(result.response.text());
}
private applyIntelligentEnhancements(
imageFile: File,
strategy: EnhancementSettings
): Promise<ImageData> {
"""
Apply enhancement settings using advanced image processing algorithms.
Maintains quality while improving visual appeal and technical characteristics.
"""
return new Promise((resolve) => {
const img = new Image();
img.onload = () => {
this.canvas.width = img.width;
this.canvas.height = img.height;
this.ctx.drawImage(img, 0, 0);
this.applyBrightnessContrast(strategy.brightness, strategy.contrast);
this.applySaturationAdjustment(strategy.saturation);
this.applySharpeningFilter(strategy.sharpness);
this.applyNoiseReduction(strategy.noiseReduction);
this.applyColorBalance(strategy.colorBalance);
const enhancedImageData = this.ctx.getImageData(0, 0, this.canvas.width, this.canvas.height);
resolve(enhancedImageData);
};
img.src = URL.createObjectURL(imageFile);
});
}
private applySharpeningFilter(intensity: number): void {
"""
Apply unsharp mask sharpening filter for enhanced image clarity.
Uses convolution matrix to enhance edge definition without artifacts.
"""
const imageData = this.ctx.getImageData(0, 0, this.canvas.width, this.canvas.height);
const data = imageData.data;
const sharpenKernel = [
[0, -intensity * 0.25, 0],
[-intensity * 0.25, 1 + intensity, -intensity * 0.25],
[0, -intensity * 0.25, 0]
];
const outputData = new Uint8ClampedArray(data.length);
for (let y = 1; y < this.canvas.height - 1; y++) {
for (let x = 1; x < this.canvas.width - 1; x++) {
const idx = (y * this.canvas.width + x) * 4;
for (let c = 0; c < 3; c++) {
let sum = 0;
for (let ky = -1; ky <= 1; ky++) {
for (let kx = -1; kx <= 1; kx++) {
const pixelIdx = ((y + ky) * this.canvas.width + (x + kx)) * 4;
sum += data[pixelIdx + c] * sharpenKernel[ky + 1][kx + 1];
}
}
outputData[idx + c] = Math.max(0, Math.min(255, sum));
}
outputData[idx + 3] = data[idx + 3];
}
}
const newImageData = new ImageData(outputData, this.canvas.width, this.canvas.height);
this.ctx.putImageData(newImageData, 0, 0);
}